AC Servo Motors/Drivers

Highly Accurate• High speed Servo System

Best suited for Mounters,Semiconductor manufacturing equipment, Printing machines, Injection molding machines, etc.

High resolution
Optical encoder Type

A sensational debut with the smallest size in the industry

The realization of downsized motors

samagama TAMAGAWA SEIKI CO., LTD.

0 TBL-i $\|_{\text {Series }}$ AC servo Motors

Best suited for Mounters,Semiconductor manufacturing equipment, Printing machines, Injection molding machines, etc.

30W~750W
 The smallest and lightest in the industry

Super-compact design achieved by downsizing our existing motors by 25% (in case of 750 W motors).Equipped with 17 bit high resolution(130thousand pulse)Absolute/Incremental encoderHigh speed setting
Fewer wires
Contents
AC Servo Motors
Main Features 2
\square The Reduction of Setting Time 2
AC Servo System 3
Basic Specifications 4
\square Outline (Standard Type) 5
Outline (with Brake) 7
AC Servo Drivers
\square Main Features 9
Basic Specifications 9
\square Model-Specific Specifications (classified by N Number) 9
\square Functions and Features 10
External Connections 10
Input and Output Signals 11

- Outline 11
\square List of Standard Driver Models 12
List of Motor Compatible Driver Combinations 12
\square System Component 13
Sensors
Smart Inc SI35 Series 15
\square Smart Abs SA35 Series 15
\square Applications 16

Main Features

\square Super-Compact Size
25\% downsizing of 750W motors compared with our conventional motorsComes with 17bit encoder as standard equipment.(17bit ABS, 17bit INC)
*Models with built-in encoder (2000C/T,2048C/T,14cores, fewer wires)as an option are also available.Satisfies overseas industrial standards.
Possible to conform with UL,CE standards

The Reduction of Setting Time

\square Reduces the setting time for positioning by 50% by enhancing control algorithm

A pulse resolution change function

- Possible to easily divide pulses of encoder signals by changing parameters

An electronic gear function

Setting the rotation per one positioning command pulse at a desired value can be performed by electronic gear.
The rotation angle can be changed without changing the mechanism.

Electric gear magnification

An alarm trace function

OMemorizes the past alarm history, which can be displayed on a panel of a driver or by personal computer. This will be helpful in trouble shooting.

Personal Computer Interface

- Entry and saving of parameters can be performed by personal computer.

Signal input from external encoders

-Position can be controlled by signals from an encoder (like a linear encoder) external to a motor.

An auto-tuning function

The optimal servo-gain can automatically be provided by estimating load inertia.
The sensitivity of the real-time auto-tuning can be changed in accordance with eight levels of machine rigidity, enabling the unit to accommodate an even wider range of machinery.

Specifications

Mounting Flange [mm]	Model	Voltage [V]	Output [W]	Rated Torque [$\mathrm{N} \cdot \mathrm{m}$] $\{\mathrm{kgf} \cdot \mathrm{cm}\}$	Maximum Torque [$\mathrm{N} \cdot \mathrm{m}$] $\{\mathrm{kgf} \cdot \mathrm{cm}\}$	Rated Current [Arms] (AC100V/ AC200V)	Rated Rotation Speed [$\mathrm{r} / \mathrm{min}$]	Maximum Rotation Speed [r/min]	Rotor Inertia [$\mathrm{GD}^{2} / 4$] [$\mathrm{kg} \cdot \mathrm{m}^{2}$] $\left\{\mathrm{g} \cdot \mathrm{cm} \cdot \mathrm{s}^{2}\right\}$	Approximate Mass [kg]
$\square 40$	TS4601	100/200	30	$\begin{aligned} & 0.095 \\ & \{0.97\} \end{aligned}$	$\begin{aligned} & 0.29 \\ & \{2.9\} \end{aligned}$	0.6/0.3	3000	5000	$\begin{aligned} & 0.01 \times 10^{-4} \\ & \{0.01\} \end{aligned}$	0.2
	TS4602	100/200	50	$\begin{aligned} & 0.159 \\ & \{1.62\} \end{aligned}$	$\begin{aligned} & 0.48 \\ & \{4.9\} \end{aligned}$	1.1/0.5			$\begin{aligned} & 0.02 \times 10^{-4} \\ & \{0.02\} \end{aligned}$	0.3
	TS4603	100/200	100	$\begin{aligned} & 0.318 \\ & \{3.25\} \end{aligned}$	$\begin{aligned} & 0.95 \\ & \{9.7\} \end{aligned}$	1.8/1.0			$\begin{aligned} & 0.03 \times 10^{-4} \\ & \{0.03\} \end{aligned}$	0.4
$\square 60$	TS4606	100/200	100	$\begin{aligned} & 0.318 \\ & \{3.25\} \end{aligned}$	$\begin{aligned} & 0.95 \\ & \{9.7\} \end{aligned}$	1.6/0.8	3000	5000	$\begin{aligned} & 0.09 \times 10^{-4} \\ & \{0.09\} \end{aligned}$	0.7
	TS4607	100/200	200	$\begin{aligned} & 0.64 \\ & \{6.5\} \end{aligned}$	$\begin{aligned} & 1.91 \\ & \{19.5\} \end{aligned}$	3.4/1.7			$\begin{aligned} & 0.18 \times 10^{-4} \\ & \{0.18\} \end{aligned}$	0.9
	TS4609	100/200	400	$\begin{aligned} & 1.27 \\ & \{13\} \end{aligned}$	$\begin{aligned} & 3.82 \\ & \{39\} \end{aligned}$	5.5/3.3			$\begin{aligned} & 0.34 \times 10^{-4} \\ & \{0.34\} \end{aligned}$	1.3
$\square 80$	TS4611	100/200	200	$\begin{aligned} & 0.64 \\ & \{6.5\} \end{aligned}$	$\begin{aligned} & 1.91 \\ & \{19.5\} \end{aligned}$	2.9/1.5	3000	5000	$\begin{aligned} & 0.30 \times 10^{-4} \\ & \{0.30\} \end{aligned}$	1.1
	TS4612	200	400	$\begin{aligned} & 1.27 \\ & \{13\} \end{aligned}$	$\begin{aligned} & 3.82 \\ & \{39\} \end{aligned}$	2.7			$\begin{aligned} & 0.56 \times 10^{-4} \\ & \{0.57\} \end{aligned}$	1.6
	TS4613	200	600	$\begin{aligned} & 1.91 \\ & \{19.5\} \end{aligned}$	$\begin{aligned} & 5.73 \\ & \{58.5\} \end{aligned}$	4.3			$\begin{aligned} & 0.88 \times 10^{-4} \\ & \{0.90\} \end{aligned}$	2.1
	TS4614	200	750	$\begin{aligned} & 2.39 \\ & \{24\} \end{aligned}$	$\begin{aligned} & 7.16 \\ & \{73\} \end{aligned}$	4.8			$\begin{aligned} & 1.08 \times 10^{-4} \\ & \{1.10\} \end{aligned}$	2.5

\square Model Numbers

TS4601 : 30W TS4602 : 50W TS4603 : 100W

TS4606: 100W TS4607: 200W TS4609: 400W

TS4611: 200W TS4612: 400W TS4613: 600W TS4614: 750W
$\mathbf{N} \square \square \square \square \mathrm{E}$

Shaft Tip Specifications
00 : Round shaft(standard equipment)
01: Duble-sided milling
02: Key slot
05 : Round shaft with oil seal
06 : Double-sided milling device with oil seal
07 : Key slot with oil seal
Sensor Specifications
10:17bit Incremental encoder
20 : 17bit Absolute encoder
60 : Brake +17 bit Incremental encoder
70 : Brake + 17bit Absolute encoder

Outline (Standard Type)

40-mm Square (30W, 50W, 100W)

60-mm Square (100W)

L:Variable dimension table

Output	100 W
Model	TS4606
$\mathrm{L}(\mathrm{mm})$	59

60-mm Square (200W, 400W)

L:Variable dimension table

Output	200 W	400 W
Model	TS4607	TS4609
$\mathrm{L}(\mathrm{mm})$	76	98

80-mm Square (200W, 400W)

80-mm Square (600W, 750W)

Tab housing
: 178964-3
Tab contact
: 175289-2(AMP)
MOTOR CONNECTION

CIN No.		
FUNCTION	COLOR	
A1	U	RED
A2	V	WHT
A3	W	BLK
B1	C.G	GRN $/$ YEL
B2	-	-
B3	-	-

-Sensor
(1) 17 bit Incremental type

Sensor

(2)17bit Abs type

Tab housing
: 1-1318115-6
Tab contact
: $1318112-1$ (AMP)

ENCODER CONNECTION
PIN No.
FUNCTION
A1
A2
A3
A4
A5

Outline (with Brake)

40-mm Square (30W, 50W, 100W)

60-mm Square (100W)

L:Variable dimension table
Output
Model
$\mathrm{L}(\mathrm{mm})$

$60-\mathrm{mm}$ Square (200W, 400W)

L:Variable dimension table

Output	200 W	400W
Model	TS4607	TS4609
$\mathrm{L}(\mathrm{mm})$	111	132

80-mm Square (200W, 400W)

80-mm Square (600W, 750W)

- Motor

Tab housing
: 178964-3
Tab housing
: 175289-2(AMP)

-Sensor
(1)17 bit Incremental type

Tab housing
: 1-1318115-6 Tab contact Tab contact
$: 1318112-1(A M P)$

PIN No.	FUNCTION	COLOR
A1	-	-
A2	-	-
A3	SD	BLU
A4	-	-
A5	Vcc	RED
A6	-	-
B1	-	-
B2	-	-
B3	$\overline{\text { SD }}$	BLU/BLK
B4	-	
B5	GND	BLK
B6	SHILD	SHILD

Sensor

(2)17bit Abs type

TBL-i $\|_{\text {Series }}$

TBL-i $\Pi_{\text {Series }}$ Utilizing high speed DSP and soft ware, this digital control driver can be used in combination with the TBL-i II Series.

Features

- Servo driver utilizing high speed DSP

A broad line up

- A wide variety of motors from 30W to 750W, conforming to 17bit incremental (or absolute) encoder.
\square Allows setting of different parameters
Setting made by using push button switches on the panel
Comes with a restore circuit and a dynamic brake as standard equipment.
Supports many functions
Low oscillation control is possible even for low rigidity mechanisms by using a control filter function.
- A function of easily dividing encoder signals

An electronic gear function
A feed forward function, etc.
Comes with an external encoder input circuit for position control as standard equipment.

- A 17bit encoder makes this unit well suited for control systems requiring high response.

Basic Specifications

Driver Model	TA8110N ***
Control Model	Position,Speed and Current control(by selecting parameter)
Motor Drive System	Transistor PWM, sine wave drive
Angle Sensor	17 bit absolute/incremental encoder (line driver output)
Operating Temperature and Humidity	$0 \sim 50^{\circ} \mathrm{C} \quad 90 \%$ RH max. (without condensation)
Construction	Base mount type

Model-Specific Specifications(classified by N number)
II/F Voltage:5V Sensor:

N Number Models	N311	N312	N313	N314	N321	N322	N323	N324
AC Power Input	$\mathrm{AC} 100 / 115 \mathrm{~V} \pm 10 \% 50 / 60 \mathrm{~Hz}$				AC200/230V $\pm 10 \%$ 50/60Hz (Single Phase/3phase)			
Rated Output Current (Arms)	1	2	4	6	1	2	4	6
Instantaneous Maximum Current (Arms)	3.39	5.66	11.3	17.0	3.39	5.66	11.3	17.0
Motor Output(reference)	(50W)	(100W)	(200W)	(400W)	(100W)	(200W)	(600W)	(750W)

Model-Specific Specifications(classified by N number)
[I/F Voltage:24V(5Vcommand pulse)

| N Number Models | N331 | N332 | N333 | N334 | N341 | N342 | N343 | N344 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AC Power Input | $\mathrm{AC} 100 / 115 \mathrm{~V} \pm 10 \% 50 / 60 \mathrm{~Hz}$ | | $\mathrm{AC} 200 / 230 \mathrm{~V} \pm 10 \% 50 / 60 \mathrm{~Hz}$ (Single Phase/3phase) | | | | | |
| Rated Output Current (Arms) | 1 | 2 | 4 | 6 | 1 | 2 | 4 | 6 |
| Instantaneous Maximum Current (Arms) | 3.39 | 5.66 | 11.3 | 17.0 | 3.39 | 5.66 | 11.3 | 17.0 |
| Motor Output(reference) | $(50 W)$ | $(100 W)$ | $(200 W)$ | $(400 W)$ | $(100 W)$ | $(200 W)$ | $(600 W)$ | $(750 W)$ |

Functions and Features

	Protective functions	Hardware Error	Excess-speed, power element error (excess current), Sensor error, drive power supply error, EEPROM error, CPU error,etc.
		Software Error	Overload, differential counter overflow,etc.
	Display and Setting		4-digit LED display, 6 setting buttons Display control mode, alarm and control signal input status.
	Parameter Settings		The following parameters can be set on the front setting board. Control mode - Speed limit Position loop gain - Current limit Speed loop gain • In-position range Speed loop integral gain • Analog command Feed forward amount • Analog command scale offset Resonance filter - Zero clamp voltage
	Positioning Accuracy		± 1 pulse or less (command standard)
	Speed Control Range		1:5000
	Auto-Tuning		Built in. Performed by changing modes
	Electronic Gear		Position control is performed by comparing the command pulse multiplied by N / M with the sensor resolution. $\mathrm{N}, \mathrm{M}=1 \sim 9999$
	Gain-switch Function		Possible to switch control gain by position deviation and speed deviation. Switching by signal input is also possible.
	External Encoder Input		Full closed position control is possible by feeding back a load shaft encoder.
	Acceleration Limit		Controls acceleration/deceleration below setting value when speed control mode is on.
	Zero clamp Function		Speed / Current command is set to "0" when analog command is below setting value
	Recommended Load Inertia		JL= $\leq 30 \mathrm{LM}$
	Rotation Direction		Both directions. CCW rotation viewed from a motor shaft end is standard.
	Regeneration Function		Regeneration circuit is built in. External resistor(option)
	Dynamic Brake		Built in. Operating conditions are set by parameters.

External Connections

Input/Output Signals

I/O	Name	Description		
	SV-ON	"1": Servo operation on	0": Servo off"	"1" :photo coupler ON "0" :photo coupler OFF
	$\begin{aligned} & \hline \text { F-LMT } \\ & \text { R-LMT } \end{aligned}$	Stops rotation toward CCW when " 0 ". Stops rotation toward CW when " 0 ". Possible to change logic		
	ALM-RST	Alarm reset when "1".		
	C-RST	Differential counter reset when "1".		
	INH	Acceptance of command pulse inhibited when "1".		
	AUX1	Auxiliary command input		
	AUX2	Auxiliary command input		
	$\begin{aligned} & \hline \text { F-PLS } \\ & \text { R-PLS } \end{aligned}$	CCW Pulse command CW Pulse command	Pulse command Rotation command	$\mathrm{f} \leqq 500 \mathrm{kHz}$
	ANALOG-IN	Analog command input($\pm 10 \mathrm{~V}$)		
	$\begin{aligned} & \text { EX-LEAD } \\ & \text { EX-LAG } \end{aligned}$	Connect gain signals to LEAD and loss signals to LAG when a LEAD/LAG signal input motor of a load shaft encoder is CCW rotation.		$\mathrm{f} \leq 500 \mathrm{kHz}$
030005000	ALM	"0" when alarm is generated,"1" when normal.		"1":photo coupler ON "0:photo coupler OFF (50mA max)
	INP	"1" when position deviation is less than setting value.		
	AUX OUT	Auxiliary signal output		
	$\begin{aligned} & \text { LEAD } \\ & \text { LAG } \end{aligned}$	Outputs by dividing accordingly pulses from motor encoder. Resolution setting (SEOUT=2~8192C/T) or outputs by dividing pulses from external encoder by N/8192.$\mathrm{N}=1 \sim 8192$		Line driver output
	Z	Outputs "Z" signal from motor encoder or from external encoder.		
	MONITOR-1 MONITOR-2	Monitors (1) motor current (2)motor rotation speed feedback,etc. Contents of monitoring and scales are set by parameters.		

Outline

TA8110N $\square \square \square \square E \square \square \square$

Series Name

Special Hardware \＆Specifications： Generally not specified

Current
1：1Arms
2：2Arms
3：4Arms
4：6Arms

Sensor Specifications

N3ㅁㅁㄷㅁㅁㅁ：17bit Absolute encoder N3ロロロE2ロロ ：17bit Incremental encoder

rem

Model of Standard Motor
31 ：TS4601（ 30W－200V） 32 ：TS4602（ $50 \mathrm{~W}-200 \mathrm{~V}$ ） 33 ：TS4603（100W－200V） 36 ：TS4606（100W－200V） 37 ：TS4607（200W－200V） 39 ：TS4609（400W－200V） 41 ：TS4611（200W－200V） 42 ：TS4612（400W－200V） 43 ：TS4613（600W－200V） 44 ：TS4614（750W－200V） 51 ：TS4601（ 30W－100V） 52 ：TS4602（ 50W－100V） 53 ：TS4603（100W－100V） 56 ：TS4606（100W－100V） 57 ：TS4607（200W－100V） 46 ：TS4611（200W－100V） 59 ：TS4609（400W－100V） ＊Not applicable to special
specifications or special motors． －

AC Servo Motor Output	AC Servo Motor Model 200 V Type		Compatible driver Model	
	Without Brake	With Brake	5V Input Signal	24V Input Signal
30w	TS4601N10＊＊E200	TS4601N60＊＊E200	TA8110N321E231	TA8110N341E231
50W	TS4602N10＊＊E200	TS4602N60＊＊E200	TA8110N321E232	TA8110N341E232
100W	TS4603N10＊＊E200	TS4603N60＊＊E200	TA8110N321E233	TA8110N341E233
	TS4606N10＊＊E200	TS4606N60＊＊E200	TA8110N321E236	TA8110N341E236
200w	TS4607N10＊＊E200	TS4607N60＊＊E200	TA8110N322E237	TA8110N342E237
	TS4611N10＊＊E200	TS4611N60＊＊E200	TA8110N322E241	TA8110N342E241
400W	TS4609N10＊＊E200	TS4609N60＊＊E200	TA8110N323E239	TA8110N343E239
	TS4612N10＊＊E200	TS4612N60＊＊E200	TA8110N323E242	TA8110N343E242
600w	TS4613N10＊＊E200	TS4613N60＊＊E200	TA8110N324E243	TA8110N344E243
750w	TS4614N10＊＊E200	TS4614N60＊＊E200	TA8110N324E244	TA8110N344E244

－100V 17bit Incremental encoder

AC Servo Motor Output	AC Servo Motor Model 100V Type		Compatible driver Model	
	Without Brake	With Brake	5V Input Signal	24V Input Signal
30w	TS4601N10＊＊E100	TS4601N60＊＊E100	TA8110N311E251	TA8110N331E251
50W	TS4602N10＊＊E100	TS4602N60＊＊E100	TA8110N311E252	TA8110N331E252
100W	TS4603N10＊＊E100	TS4603N60＊＊E100	TA8110N312E253	TA8110N332E253
	TS4606N10＊＊E100	TS4606N60＊＊E100	TA8110N312E256	TA8110N332E256
200W	TS4607N10＊＊E100	TS4607N60＊＊E100	TA8110N313E257	TA8110N333E257
	TS4611N10＊＊E100	TS4611N60＊＊E100	TA8110N313E246	TA8110N333E246
400W	TS4609N10＊＊E100	TS4609N60＊＊E100	TA8110N314E259	TA8110N334E259

200V 17bit Absolute encoder

AC Servo Motor Output	AC Servo Motor Model 200V Type		Compatible driver Model	
	Without Brake	With Brake	5 V Input Signal	24V Input Signal
30W	TS4601N20＊＊E200	TS4601N70＊＊E200	TA8110N321E131	TA8110N341E131
50w	TS4602N20＊＊E200	TS4602N70＊＊E200	TA8110N321E132	TA8110N341E132
100W	TS4603N20＊＊E200	TS4603N70＊＊E200	TA8110N321E133	TA8110N341E133
	TS4606N20＊＊E200	TS4606N70＊＊E200	TA8110N321E136	TA8110N341E136
200W	TS4607N20＊＊E200	TS4607N70＊＊E200	TA8110N322E137	TA8110N342E137
	TS4611N20＊＊E200	TS4611N70＊＊E200	TA8110N322E141	TA8110N342E141
400W	TS4609N20＊＊E200	TS4609N70＊＊E200	TA8110N323E139	TA8110N343E139
	TS4612N20＊＊E200	TS4612N70＊＊E200	TA8110N323E142	TA8110N343E142
600W	TS4613N20＊＊E200	TS4613N70＊＊E200	TA8110N324E143	TA8110N344E143
750W	TS4614N20＊＊E200	TS4614N70＊＊E200	TA8110N324E144	TA8110N344E144

－100V 17bit Absolute encoder

AC Servo Motor Output	AC Servo Motor Model 100V Type		Compatible driver Model	
	Without Brake	With Brake	5 V Input Signal	24V Input Signal
30W	TS4601N20＊＊E100	TS4601N70＊＊E100	TA8110N311E151	TA8110N331E151
50W	TS4602N20＊＊E100	TS4602N70＊＊E100	TA8110N311E152	TA8110N331E152
100W	TS4603N20＊＊E100	TS4603N70＊＊E100	TA8110N312E153	TA8110N332E153
	TS4606N20＊＊E100	TS4606N70＊＊E100	TA8110N312E156	TA8110N332E156
200w	TS4607N20＊＊E100	TS4607N70＊＊E100	TA8110N313E157	TA8110N333E157
	TS4611N20＊＊E100	TS4611N70＊＊E100	TA8110N313E146	TA8110N333E146
400W	TS4609N20＊＊E100	TS4609N70＊＊E100	TA8110N314E159	TA8110N334E159

Name		Model	Note
(1)	Noise filter	SUP-PIOH-EIPR-* ($\left.\begin{array}{l}\text { made by } \\ \text { Okaya Denki Sangyo }\end{array}\right)$	※1 Recommended product
(2)	Power factor enhancing reactor	FR-BAL-0.75K ($\left.\begin{array}{l}\text { mitse by } \\ \text { mabishi Electric }\end{array}\right)$	※1 Recommended product
(3)	Regeneration resistance unit	EU6656N1	80W-47 Ω type
(4)	Motor cable	EU9250N30	Lead $\ell=3.0 \mathrm{~m}$
		EU9250N50	Lead $\ell=5.0 \mathrm{~m}$
		EU9250N100	Lead $\ell=10.0 \mathrm{~m}$
		EU9250N150	Lead $\ell=15.0 \mathrm{~m}$
(5)	Sensor cable	EU9251N30	Lead $\ell=3.0 \mathrm{~m}$
		EU9251N50	Lead $\ell=5.0 \mathrm{~m}$
		EU9251N100	Lead $\ell=10.0 \mathrm{~m}$
		EU9251N150	Lead $\ell=15.0 \mathrm{~m}$
(6)	Input connector I/O connector only : CN1	19250-52A2JL(3M)	Without a lead
(6), (7)	Connector set (CN1,CN2)	EU6657N1	Without a lead
(8)	PC Communication cable	EU6517N2	Lead $\ell=2.0 \mathrm{~m}$
(9)	PC I/F Software	EU6651	Possible to download from our home page

Note : * 1 To order the recommended products,customers should contact the relevant manufacturer directly.
 (9)

Software EU6651

Upper controller, sequential controller,etc.

$5^{\text {smant Inc }}$ -

 TS5668N20
SI35 Series

Application

For small to middle wattage motors

- Robots
- Machine tools
- Injection machines

Features

- Full absolute signal output

17bit/turn(At $100 \mathrm{~s}^{-1}$ Max)

- Two-way serial communication type(NRZ)
- E^{2} PROM memory is open for users.

8bit $\times 80$ address=640bit Max

- Fail-check operation
- Small model(ϕ 35)

Application

For small to middle wattage motors
Robots

- Machine tools
- Injection machines

Features

- Full absolute signal output

17bit/turn. 16bit turns(At $100 \mathrm{~s}^{-1}$ Max)

- Two-way serial communication type(NRZ)
- E^{2} PROM memory is open for users.

8bit $\times 80$ address=640bit Max

- Fail-Check Operation
- Even during power outage, multi-turn data are backed up by external battery.

- Applications

- Mounters

- Semiconductor manufacturing equipment

- Printing machines

Jamagams

TAMAGAWA TRADING CO.,LTD.
 A COMPANY OF TAMAGAWA SEIKI CO.,LTD.
 HEAD OFFICE:
 TOKYO OFFICE:

1879 OHYASUMI, IIDA, NAGANO PREF, 395-8515, JAPAN 3-19-9 SHINKAMATA, OHTA-KU, TOKYO 144-0054, JAPAN
PHONE : 0265-21-1840
PHONE : 03-3738-3132
FAX : 0265-21-1864
FAX : 03-3738-3175

[^0]
[^0]: WARRANTY
 Tamagawa Seiki warrants that this product is free from defects in material or
 workmanship under normal use and service for a period of one year from the date of shipment from its factory. This warranty, however, excludes incidental and
 consequential damages caused by careless use of the product by the user. Even
 after the warranty period, Tamagawa Seiki offers repair service, with charge, in order
 to maintain the quality of the product. The MTBF (mean time between failures) of our
 product is quite long;yet,the predictable failure rate is not zero. The user is advised,
 therefore,that multiple safety means be incorporated in your system or product so
 as to prevent any consequential troubles resulting from the failure of our product.

